Rational design of quinones for high power density biofuel cells.

نویسندگان

  • Ross D Milton
  • David P Hickey
  • Sofiene Abdellaoui
  • Koun Lim
  • Fei Wu
  • Boxuan Tan
  • Shelley D Minteer
چکیده

Enzymatic fuel cells (EFCs) are devices that can produce electrical energy by enzymatic oxidation of energy-dense fuels (such as glucose). When considering bioanode construction for EFCs, it is desirable to use a system with a low onset potential and high catalytic current density. While these two properties are typically mutually exclusive, merging these two properties will significantly enhance EFC performance. We present the rational design and preparation of an alternative naphthoquinone-based redox polymer hydrogel that is able to facilitate enzymatic glucose oxidation at low oxidation potentials while simultaneously producing high catalytic current densities. When coupled with an enzymatic biocathode, the resulting glucose/O2 EFC possessed an open-circuit potential of 0.864 ± 0.006 V, with an associated maximum current density of 5.4 ± 0.5 mA cm-2. Moreover, the EFC delivered its maximum power density (2.3 ± 0.2 mW cm-2) at a high operational potential of 0.55 V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of membrane on power density of ethanol/O2 biofuel cell

A biofuel cell is a device for converting chemical energy to electrical energy by a simple way. A high-impact anode is prepared in this research. Here, carboxylated multiwall carbon nanotube (COOH-MWCNT), polydiallyldimethyl ammonium chloride (PDDA) and alcohol dehydrogenase were cast on modified glassy carbon with polymethylene green to construct the bioanode for ...

متن کامل

Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...

متن کامل

Design and Fabrication of Glucose/O2 Enzymatic Biofuel Cell

Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...

متن کامل

Effect of support on power output of ethanol/O2 biofuel cell

Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the...

متن کامل

Rational design of quinones for high power density biofuel cells† †Electronic supplementary information (ESI) available: Supplementary Fig. 1–18, supplementary Tables 1 and 2, 1H NMR and 13C NMR spectral data, HRMS (ESI), full experimental procedures, and enzymatic activity assays. See DOI: 10.1039/c5sc01538c Click here for additional data file.

Materials Unless otherwise stated, FAD-dependent glucose dehydrogenase (E.C.: 1.1.99.10, Aspergillus sp., GLDE-70-1192) was purchased from Sekisui Diagnostics (UK) and used without any further purification. For comparison experiments, GDH was also purchased from Amano Enzyme Inc., Japan (“Amano 8”, Aspergillus oryzae) and BBI Solutions USA (GLD1, Aspergillus oryzae). Bilirubin oxidase (Myrothec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2015